Archaeological Investigation

Martin Carver
Archaeological Investigation

Martin Carver
Archaeological Investigation

Martin Carver

Drawing its numerous examples from around the world, *Archaeological Investigation* explores the procedures used in field archaeology travelling over the whole process from discovery to publication.

Divided into four parts, it argues for a set of principles in Part 1, describes work in the field in Part 2 and how to write up in Part 3. Part 4 describes the modern world in which all types of archaeologist operate, academic and professional. The central chapter ‘Projects galore’ takes the reader on a whirlwind tour through different kinds of investigation including in caves, gravel quarries, towns, historic buildings and underwater.

Archaeological Investigation intends to be a companion for a newcomer to professional archaeology – from a student introduction (Part 1), to first practical work (Part 2), to the first responsibilities for producing reports (Part 3), and in Part 4 to the tasks of project design and heritage curation that provide the meat and drink of the fully fledged professional.

The book also proposes new ways of doing things, tried out over the author’s thirty years in the field and here brought together for the first time. This is no plodding manual but an inspiring, provocative, informative and entertaining book, urging that archaeological investigation is one of the most important things society does.

Martin Carver specialises in the archaeology of early Medieval Europe and field archaeology in all periods. He was a freelance archaeologist from 1972 until 1986, when he was appointed professor and head of department at the University of York. Since 2003 he has been editor of the journal *Antiquity*.
Archaeological Investigation

Martin Carver
To my friends pictured within.
Table of Contents

List of illustrations
Acknowledgements and picture credits
Preface

PART 1: PRINCIPLES

How archaeological fieldwork relates to theory and the society in which it is practised. The demands of research, the needs of conservation and the rights of stakeholders – and how these can be reconciled.

Chapter 1: The stuff

A prodigious variety
Methods of study
Defining archaeological strata
Archaeological vocabulary
Conclusion

Chapter 2: Approaches

What do we want from fieldwork?
Empirical to reflexive: five approaches
Evaluative archaeology
Field Research Procedure

Chapter 3: Field Research Procedure: a framework

A value-led project: the Sutton Hoo burial ground
Stage 1 Reconnaissance
Stage 2 Evaluation
Stage 3 Project design
Stage 4 Field investigation
Stage 5 Analysis
Stage 6 Publication
Reflection
PART 2: IN THE FIELD

Here I review techniques and their applications for five principal types of field operation.

Chapter 4: Landscape survey

First day in the field
Techniques
Applications
In sum …

Chapter 5: Site survey

Looking at sites
Techniques
Applications
In sum …

Chapter 6: Excavation

First day on a dig
On method: three ways of dissecting strata
On procedure: Recovery Levels
Recording
The course of an excavation
In sum …

Chapter 7: Projects galore: Integrated Field Research

A cave site in Greece
A shell mound in Kentucky
On the gravels: a timber palace in Northern England
On the sand: a Neolithic village by the Seine
A turf hall in Norway
A stone fort in Sweden
A tell site in Syria
A terp site in Holland
A Maya ruin in Belize
Getting wet
In a shallow Alpine lake
Diving deep off Turkey
A villa by the Adriatic
Tomb tableaux in China
PART 3: WRITING UP

This shows how the records gathered in the field are studied and reported to researchers, to clients and to the public.

Chapter 8: Analysis

The tasks: manage, assess and analyse
The analytical programme
Case study: Saddler Street, Durham
Conclusion

Chapter 9: Assemblage

Retrieval
Analysis
Artefacts
Biological (biota) samples
Interpreting site assemblages

Chapter 10: Space

Scales of space
Spatial patterns from excavation
Plotting objects
Mapping features and structures
Spatial patterns from site survey
Spatial patterns in the landscape
Pattern-seeking by computation

Chapter 11: Chronology

The business of chronology
Typological dating of artefacts
Scientific dating of materials
Using objects to date contexts
Relative ordering of contexts
Ordering contexts by their assemblages
Chronology for poorly stratified sites
The chronology of well-stratified sites
Context seriation: assemblages and stratification working together
Feature sequence diagrams

Chapter 12: Synthesis

Why write?
Site models
Interpretation
The wider context
Conclusion

Chapter 13: Publication

Types of output
Archive
Client reports
Research Reports
Talking to the public
Display of sites
Conclusion

PART 4: DESIGN

Armed with the basic methods of archaeological investigation, the reader is introduced to the design process, and the context in which designs are prepared. Design feeds the research community with new knowledge and supplies the conservation profession with new protected resources. These interests constitute the main employment of archaeologists in the modern world.

Chapter 14: Evaluation and Project Design

Introduction
Field Research Procedure and its design stages
Evaluation in town and country
Making the resource model; rural sites
Resource modelling for urban sites
Contents of a Project Design
Implementation
Conclusion

Chapter 15: Our profession and its context

What sort of a state are you in?
List of Illustrations

The following were reproduced with kind permission. While every effort has been made to trace copyright holders and obtain permission, this has not been possible in all cases. Any omissions brought to our attention will be remedied in future editions.

Colour plate section

1a Excavators preparing an archaeological surface showing prehistoric and medieval features at Portmahomack, north-east Scotland (FAS Ltd).

1b Archaeological strata seen from the side. Labelled layers of charcoal, soil and stones lie above the sandy subsoil (FAS Ltd).

Aerial photographs of cropmarks: (clockwise) ring ditches showing in wheat fields, ploughed out banks, and a settlement enhanced by infra-red film © English Heritage NMR.

Taking off the topsoil. The area to the lower left has been shaved by a backblading Drott (at Level A). The area to the right has been shovel-scraped, removing the ridges (Level B) and is being cleaned at Level C; the rectangle at the top is being cleaned at Level D, and the graves exposed are being excavated at Level E. The photograph was taken from a kite, operated remotely (see kite string top right).

Quadrants used to study a mound at Sutton Hoo in 1989 (left). Some 20 years earlier, excavators had used boxes to study the adjacent mound at the same site (right).

4b Recovery Levels in action: from top to bottom: shovel scraping at Level B, fine trowelling at Level D and excavating a grave at Level E.

Feature excavation at Level D. The feature is a square stone hearth of the 9th century, cut away on two sides by later activity. As can be seen this was a busy area in which nothing survived in one piece – a common situation in towns (FAS Ltd).

5b Record as you dig. Learning how to describe contexts and draw a plan of a small post-hole on a sandy flat site (Nigel Macbeth).

Unto dust we shall return: (clockwise) sand body under excavation at (Sutton Hoo); foot of skeleton with preserved shoe (and big toe); skeleton with unidentified white deposit (FAS Ltd).

Taking samples on site for dating and palaeoecological studies: (anti-clockwise) sample being taken for radiocarbon dating from a burnt layer in section; a column (“monolith”) being taken with a three-sided plastic drain pipe for soil analysis; 30gm samples for soil pollen, their exact location being noted on the drawn section.

Dating structural timbers by dendrochronology: (top) different dates for timbers in the same house; (bottom) a sequence of occupation using the latest primary timbers (courtesy of Kurt Bänteli and Burghard Lohrum (1993), and Landesdenkmalamt Baden-Württemberg and the City of Zürich).

Sequencing a building complex at Marki, Cyprus: (top) the lifetimes of the neighbouring rooms, spread over seven phases (A–H), and (bottom) the final phase H (courtesy of David Frankel and Jennifer Webb).

Site model in the form of an image sequence (a–d) of the 7th century palace at Monte Barro, Italy (courtesy of Gian-Pietro Brogiolo and Lanfredo Castelletti). Framework’s investigations at Stansted Airport: (clockwise) map showing locations of excavations; map of 1777 – the airport was once a deer park; excavated deer hunting lodge, with distribution of deer bones timeline for all discoveries; (courtesy of Framework Ltd).

Examples of client reports issued by FAS Ltd: (clockwise) an evaluation; an investigation; a buildings recording project; and a conservation plan (courtesy of FAS Ltd).

Some professional fieldworkers: (from top) excavator (wearing a name badge, on a building site); excavation supervisor teaching; a buildings archaeologist; an excavation recorder; a finds supervisor; a project manager.

Figures

Chapter 1

1.1 Temple into heap: limestone structures at Selinunte, Sicily (P.A. Rahtz and author).
1.2 The Roman town of Herculaneum, buried by volcanic eruption in AD79; and above
it the modern town of Ercolano (author).

1.3 Timber-frame barn, on the way out, near Bromyard, Herefordshire (photo: P.A. Rahtz).

1.4 Geronimo’s wickiup (a), and prehistoric stances left by shelters of the kind in the same terrain (b) (Arizona Historical Society).

1.5 Factors that affect the formation of archaeological deposits.

1.6 What happens to history: the decay and dispersal of human settlements.

1.7 Trapping strata: some French examples (drawn by Liz Hooper).

1.8 Archaeological strata viewed from the side: Director Mihriban Özbaşaran shows visitors the 30m section through the tell at Aşıklı höyük, Turkey, 10,000–3000 BC, with a sequence of houses with hearths built one over the other on the same place (centre top of image) (author).

1.9 Mud brick coursing of a building on the tell at Aşıklı höyük, Turkey (author).

1.10 Site formation experiment: a reconstructed burial mound at Sutton Hoo freshly made (a); and (b) the “stone roll” of an ancient mound seen in section (N. Macbeth).

1.11 Archaeological strata viewed from the top: a ditch, cutting plough marks, which cut the sandy white subsoil (FAS Ltd).

1.13 A slice of urban strata (drawn by Liz Hooper).

1.14 Examples of features and their contexts (drawn by Liz Hooper).

Chapter 2

2.1 Approaches 1: Fossicking. (a) “Discovery of the giant head” at Nimrud, Iraq, 1840s (Layard 1854, I, 66) and (b) speculative trenching at Caerleon, Wales in the 1950s (P.A. Rahtz).

2.2 Record vs. inquiry: (a) Pitt Rivers and (b) Petrie.

2.3 The forest and the trees, A.V. Kidder.

2.4 Approaches 2: the empirical (a) P.A. Barker and (b) excavations at Hen Domen, Wales in the 1970s.

2.5 Approaches 3: the processual (a) Lewis Binford and (b) random sampling at Çayönü, Turkey 1960s (Redman 1987).

2.6 Approaches 4: the historical (a) Mortimer Wheeler with Barry Cunliffe and (b) box excavation in progress at Maiden Castle Dorset, UK, 1930s (P.A. Rahtz; Wheeler 1954).

2.7 Approaches 5: the reflexive (a) Ian Hodder and (b) excavations in progress at Çatalhöyük in 2008 (author).

2.8 Approaches 6: the evaluative (a) the author and (b) extract from Sutton Hoo design (see Chapter 3) (N. Macbeth).

2.9 Field Research Procedure: a framework (drawn by E. Hooper).
Chapter 3

3.1 Aerial photograph of the Sutton Hoo mounds (C. Hoppitt).
3.2 Excavators in Mound 2 in 1988, showing the rediscovered traces of earlier excavation campaigns (N. Macbeth).
3.3 Reconnaissance: the Anglo-Saxon Kingdom of East Anglia with known archaeological sites.
3.4 Evaluation: zones demarcated for remote mapping.
3.5 Evaluation: likely limits of prehistoric and early medieval settlement.
3.6 Evaluation: deposit model. This shows the depth of strata that remained and the degree to which it had been disturbed.
3.7 Research framework: kingdoms of the North Sea. This picture of newly formed polities around the coasts of the North Sea provided the principal context for research at Sutton Hoo. When were these kingdoms created, and how? What was the nature of their politics and their relations with each other?
3.8 Research agenda.
3.9 Sutton Hoo – the social context. Local residents, treasure hunters, historians, anthropologists, prehistorians, environmentalists, and archaeologists and visitors from every nation (N. Macbeth).
3.10 Design for excavation and site survey.
3.11 Survey design: (a) local (the Deben Valley); (b) regional (East Anglia); (c) the nested overall design.
3.12 (a) Visitors gather on mound (b) mound reconstructed for site display (N. Macbeth).
3.13 (a) Design for public access; (b) day out for school children (N. Macbeth).
3.14 A busy open day at Sutton Hoo. Visitors from archaeology societies mingle with members of the public and a film crew as excavators (in the foreground) try to keep their concentration (N. Macbeth).
3.15 Excavation complete (J. Garner-Lahire).
3.16 Excavatory analysis: (a) assemblage; (b) chronology; (c) space.
3.17 Synthesis: (a) prehistoric; (b) historic.
3.18 Publication: (a) archive; (b) field reports online; (c) annual report to sponsors; (d) research report; (e) popular book; (f) site guide; (g) site presentation; (h) newspaper report.

Chapter 4

4.1 Field-walking. Surface collection on an English spring day (Yorkshire) (FAS Ltd).
4.2 Out and about in Highland Scotland: traces of Bronze Age to Medieval stone buildings on the surface in Strathnaver, Sutherland (author).
4.3 Mapping a 10th century estate from field names in England (Reynolds 1999, 82).
4.4 (a) Yield of metal objects found by metal-detectorists by county (courtesy of the Portable Antiquities Scheme); and (b) a metal-detectorist at work (N. Macbeth).

4.5 Mapping an earthwork with a TST, on the haut plateau at Benia, Atlas mountains, Algeria in 1993. (a) Theodolite (b) staff plan of site (d) hachure plan of Area C (author).

4.6 Factors affecting successful field-walking.

4.7 (a) Vertical air photograph of the early Islamic town of Samarra, Iraq (courtesy of Alastair Northedge) and (b) Kildrummy Castle in a slanting light (Crown copyright RCAHMS).

4.8 Ways of getting aloft (a) using a paramotor in Armenia and (b) view from the paramotor.

4.9 Best conditions for finds and photographing sites from the air.

4.10 Lidar sees beneath the trees.

4.11 Corona declassified spy satellite pictures from 1950–70: (a) irrigation in NW Iran (Alizadeh and Ur 2007) (b) trackways around Tell Brak, Syria (Ur 2003).

4.12 Techniques and applications for landscape survey.

4.13 Inventory survey on Bodmin Moor showing key (right) (© English Heritage).

4.14 Sampling templates for reconnaissance surveys (below) and systematic orthogonal transects in the Albegna Valley, Italy (above).

4.15 Historic Landscape Characterisation – the island of St Agnes, Cornwall. The different shades represent different types of land use (Crown copyright Cornwall County Council).

4.16 Andrew Fleming’s research survey of Dartmoor Reaves: (a) aerial photo of Horridge Common; (b) map of reaves (stony banks) on Eastern Dartmoor; and (c) interpretation of territories.

4.17 Willey in the Virú: (a) the survey area; (b) Willey’s jeep; (c) key used on survey plans; (d) synthesis, suggested community patterns for the Puerto Moorin period; and (e) plan of a site (V-81).

4.18 Research survey in the Anuradhapura hinterland, Sri Lanka: (a) the search area and its transects; (b) setting out; (c) monastic sites; (d) pottery distribution (courtesy of Robin Coningham).

4.19 Twenty-five years’ field-walking on farmland at Witton, Norfolk: (a) map of the search area; (b) densities of surface pottery in the Middle-Saxon period; and (c) interpretation: evolution of settlement, AD500–1100 (East Anglian Archaeology).

4.20 Value led research survey – Boeotia, Greece (courtesy of Anthony Snodgrass).

Chapter 5

5.1 Techniques for site survey.

5.2 The medieval abbey at Byland on maps of the 18th century (a) and the 19th century (b). These maps were used to give the basic layout of the monastery in
The advance of an evaluation project in 2008 (FAS Ltd).

5.3 The Iron Age hill-fort of Dunnideer, Scotland: (a) from the air; and (b) a hachure plan of centre; (c) hachure plan of site (Crown copyright RCAHMS).

5.4 Contour survey and pottery plot at Çatalhöyük, Turkey (courtesy of McDonald Institute).

5.5 Site survey at Tel el-Amarna, Egypt, mapping the ancient road lines with a GPS: (a) how the tracks appear on the ground; (b) map of area surveyed; and (c) the road lines located (courtesy of Helen Fenwick).

5.6 Site surveys carried out at Sutton Hoo. The surface finds are marked by a dot, the double lines are plotted cropmarks, and the greyscale squares are phosphate measurements.

5.7 (a) Floral survey on the surface of the Sutton Hoo barrow cemetery. In the event this pattern mainly indicated the sites of holes dug by recent farmers, tomb raiders and archaeologists; and (b) photograph of an anomaly.

5.8 Geophysical surveyors in action: (a) soil sounding radar; (b) fluxgate gradiometry; (c) magnetic susceptibility; (d) resistivity meter; and (d) caesium magnetometer (N. Macbeth).

5.9 Fluxgate gradiometry survey of an Iron Age salt works at Marsal, France. (a) Geophysical map, showing furnaces either side of a stream bed. (b) Furnace under excavation (Laurent Olivier 2007).

5.10 Caesium magnetometry finds a Neolithic monument made of circles of wooden posts at Stanton Drew, England (courtesy of Andrew David).

5.11 Which could see what at Sutton Hoo? Geophysical instruments perform on a test area, subsequently excavated.

5.12 Augering for urban evaluation (Hungate, York): (a) the auger is a hollow cylinder about 10–15cms in diameter which is driven into the ground by a mechanical hammer. When extracted it brings with it a sample of the deposit – a core; and (b) cores indicate the depth of natural and human deposit (FAS Ltd).

5.13 Bore-hole survey at Bagnolo San Vito, Italy, confirming and mapping the low mound of the Etruscan city (deep deposits in black circles) (M. Hummler).

5.14 Test-pits used to focus the activity at a Mesolithic site in Uist, Scotland (courtesy of McDonald Institute).

5.15 Site survey at Hindwell. The topographic survey was generated from numerous points captured digitally by TST and exported as a three-dimensional CAD file. The result is presented as a Digital Terrain Model (DTM). The magnetometer survey, which mapped a Roman fort and a Neolithic palisade and numerous other features, was laid over the DTM to provide a combined model, in this case viewed vertically. Surveys by Helmut Becker and Barry Masterton for Clwyd Powys Archaeological Trust.

5.16 Site survey at Nicopolis, Greece: (a) resistivity survey of Roman building and its interpretation; (b) topographical survey (hachures and contours) of the post-Roman annex; (c) resistivity plot of the annex; (d) interpretation of the annex (courtesy of...
Andrew Poulter).

5.17 The churchyard at Portmahomack, Scotland, showing the boundaries as deduced from the dates on the gravestones (above); recording memorials (below) (author).

5.18 Civil War battlefield at Grafton Regis, with a plot of shot found by metal detector (Glen Foard).

5.19 Garden archaeology: locating a vanished 18th century walled garden at Lydiard Park, England, using a map of 1886 and trenches. In the centre of the area formed by garden paths was the water supply – a well with a stone basin lined with clay (Wessex Archaeology).

Chapter 6

6.1 Sketch of an open area excavation (drawn by Elizabeth Hooper).

6.2 Tight places: (a) test excavation in chemically contaminated site (FAS Ltd); and (b) excavating a tunnel in a flint mine at Defenzola, Italy (Galiberti 2005).

6.3 Safety first: pics a–d show four main causes of accidents on excavations.

6.4 Excavation team at Achir, Algeria, 1993: students, academics, civil servants from the heritage ministry and national museum, local residents and volunteers (author).

6.5 Three ways of dissecting strata: (top) the Schnitt method: the excavated deposit is recorded as a series of horizontal and vertical slices; (centre) sampling in quadrats: the deposit is explored by digging square boxes, separated from each other or side by side; (bottom) stratigraphic excavation. The deposit is taken apart by defining the many episodes that created it (FAS Ltd).

6.6a–e Geometric or Schnitt excavation at Starigrad/Oldenburg, Germany (a, b). The horizontal (e) and vertical (c, d) surfaces are recorded precisely and normally in colour (courtesy of Michael Müller-Wille).

6.7 Box excavation in China in 2006. The boxes are excavated leaving four walls for each, carrying sections (left); after recording the greater part of the walls are demolished leaving columns at the junctions (centre); these columns are then removed (right) and the lower part may be dug in open area (Cultural Relics Press).

6.8 Random sampling at the Joint Site, USA. The locality is explored using random quadrats and test trenches (a), while the central pueblo (b) is investigated using a sample of its rooms, tested or excavated; and (c) shows the key (after Schiffer 1976).

6.9 Quadrant procedure (above) and stage procedure (below) (FAS Ltd).

6.10 Recovery Levels – a general example. These are re-designed to serve each excavation project.

6.11 Digging at Level A: (a) Hymac with long arm and teeth, and pneumatic drill break up concrete in London; (b) monitoring a box-grader lowering the topsoil in Russia; (c) JCB using back-hoe; (d) Drott back-blading.

6.12 Level B in action: (a) shovelling out a ditch after machining (Italy); (b) breaking
a surface with rakes; and (c) surface collecting (England).

6.13 Level C cleaning: (a) trowelling line; (b) brushing loose gravel; and (c) defining with trowel (FAS Ltd and N. Macbeth).

6.14 Recording horizons: (a) spraying, (b) tagging and (c and d) plotting with TST (N. Macbeth and FAS Ltd).

6.15 Leave it in place! Level D definition; freeing a pattern of bones with trowel and paint brush (FAS Ltd).

6.16 Feature portraits, during excavation (below) and after (above) (FAS Ltd).

6.17 Excavating graves: (a) how burial pits show on a gravelly surface; (b) finding the body by lowering the fill in stages; (c) the Level E toolkit; and (d) a complete tableau.

6.18 Level E burial excavation records: (a) a photograph and (b) a context map at a particular stage (N. Macbeth/A. Roe).

6.19a–c Level F chemical mapping (a) sampling the floor of a burial chamber (b) at Sutton Hoo; (c) the result of the analysis (N. Macbeth).

6.20 Level F recording. Exact silicon rubber moulding being taken of a sand-burial (N. Macbeth).

6.21 Level F excavation: taking the post-holes home; lifting a section of earth consolidated with PVA on a chalk site (Chalton, England).

6.22 Level F excavation: taking a burial chamber home at Högom (Sweden); (a) the burial is jacketed in a wooden crate; (b) the crate is lifted and taken to the lab on a lorry and (c) the excavated burial: a 5th century AD warrior in bed (courtesy of Per Ramqvist).

6.23 Level F excavation: Lifting the Sutton Hoo Bridle block: (a) consolidation and location of the block in the field; (b) the plan, with site grid and lab grid; and (c) dissection of the block in the lab (N. Macbeth; A. Roe).

6.24 Recording: (anti-clockwise) (a) photographing a structure; (b) planning at 1:10; (c) deciding Munsell colour; and (d) writing journal (FAS Ltd).

6.25 Multi-concept records.

6.26 (a) feature record and (b) context record.

6.27 A set of contexts makes a feature: in this case a post-pit (the feature) made up of pits, a stone post-pad and backfills (contexts). This feature had a “life”: an upright post on a stone pad was replaced by a vertical post and a leaning buttress post in adjacent pits; and both these posts were subsequently removed (FAS Ltd).

6.28 A set of features makes a structure. Rows of post-pits (features) excavated into chalk. The presence of a structure is inferred from the pattern that the posts make in the ground.

6.29 Feature map by overhead photography (Japan). The edges of features are enhanced with whitener (courtesy of Kaname Mayakawa).

6.30 Drawing a section. A tape is stretched along a horizontal datum line with a measured height above sea level. One archaeologist measures the horizontal distance along the datum and the vertical distance up from the datum (with a hand
tape) and shouts out the co-ordinates to the other, who is making the section record, annotated and drawn to scale (author).

6.31 Section through a Neolithic well at Sha’ar Hagolan in the Jordan Valley, Israel. The well has been cut vertically through to expose its structure and its well pit: (a) photograph with a grid, and (b) section drawing, carried down below the water table, where the camera cannot reach (Yosef Garfinkel).

6.32 Excavation records (left) and the recording cycle (right) (FAS Ltd).

6.33 The course of an excavation (FAS Ltd).

6.34 Daily life on a dig: (a) site cabin for recorders; (b) filling sand bags; (c) tea break; (d) end of the day – cleaning the tools (author).

6.35 Excavation summary.

Chapter 7

7.1 Map showing locations of projects discussed in this chapter (FAS Ltd).

7.2 Klithi Cave, Greece: (a) inspecting a core; (b) excavating in quadrats; (c) the cave plan with location of cores and areas excavated (courtesy of Geoff Bailey).

7.3 Carlston Annis shell mound, Kentucky: (a) contour map; (b) a deep section; (c) profile; (d) types of shell; and (e) coring with the Giddings Probe (William Marquhart).

7.4 Anglo-Saxon palace on the gravels at Yeavering: (a) Brian Hope-Taylor, the excavator; (b) aerial photo; (c) sections demonstrating different kinds of upright timber, now vanished and (d) structure plan with depth of features (Brian Hope-Taylor).

7.5 Yeavering: primary horizontal section (a) photograph and (b) plan (Brian Hope-Taylor).

7.6 The Poses site by the Seine (a and b), and the exploratory trenches that found the Neolithic longhouses (c and d) (Françoise Bostyn).

7.7 Borg, Lofoten Islands, Norway: (a) excavation; (b) surface survey and (c) appearance of Horizon 2 (Else Roesdahl).

7.8 Borg: (a) feature map; (b) phosphate plot; and (c) interpretation (Else Roesdahl).

7.9 Excavations at Eketorp, Sweden: (a) location; (b) the excavated ring-work; (c) excavators at work; (d) scheme of stratification; and (e) sequence (Borg et al 1976).

7.10 Tell Brak, Syria: (a) excavations in progress in Area TW looking east; and (b) location map of excavations (Joan Oates).

7.11 Wijlandum-Tjitsma, a terp in Holland: (a) scraping the surface; (b) profile; (c) long-house features showing on the surface, including turf walls and post-holes; and (d) plan of excavation trenches, with section points and year in which excavation started (Besteman et al 1999).

7.12 Cuello, Belize: (a) investigation of site using quadrats; (b) investigation of a platform; using quadrants; (c) drawn section through a platform (Norman...